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A theory for the viscous sublayer of a turbulent flow 

By JOSEPH STERNBERG 
Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland 

(Received 27 April 1961 and in revised form 12 September 1961) 

The laminar sublayer and ‘transition zone ’ are shown to be the region where the 
turbulent velocity fluctuations are directly dissipated by viscosity. A simplified 
linearized form of the equations of motion for the turbulent fluctuations is used to 
describe the turbulent field between the wall and the fully turbulent part of the 
flow. The mean flow in the viscous sublayer and the turbulent field outside the 
sublayer are assumed to be known from experiment. The thickness of the sub- 
layer arises naturally in the theory and is directly analogous to the inner viscous 
region for the fluctuations in a laminar flow. It is shown that the large-scale 
fluctuations containing most of the turbulent energy are convected downstream 
with a velocity characteristic of the middle of the boundary layer. Thus Taylor’s 
hypothesis does not apply to these large-scale fluctuations near the wall. The 
convective velocity found in the measurements of pressure fluctuations at the 
boundaries of turbulent flows is in accord with the theory. Calculations are given 
for the energy spectra and u‘ fluctuation level in the sublayer and other aspects 
of the fluctuation field are discussed. The linear pressure fluctuation field at  the 
edge of the sublayer is calculated and found to be much larger than the non- 
linear field. Examining the effect of strong free-stream turbulence on laminar 
boundary-layer transition, it appears that the physical model underlying Taylor’s 
parameter is incorrect. 

1. Introduction: the laminar sublayer 
The laminar sublayer has been a subject of controversy and investigation for 

more than 20 years. The reason for this interest is that the nature of the flow 
close to the wall has an important influence on the heat, mass, and momentum 
transfer from the boundary. Furthermore, experiments have shown that the 
flow of energy from the mean flow to the turbulent motion is a maximum inside 
the sublayer. This fact suggests that an understanding of the structure of turbu- 
lence in a shear flow may depend on an understanding of the flow near th.e wall. 

The original idea, Taylor (1916), was that in a turbulent flow there ought to 
be a thin fluid layer next to the surface free of turbulent motion, a true laminar 
layer. Studies of the sta.bility of Couette flow (the flow between a fixed wall and a 
moving wall) had shown that there was a critical Reynolds number ( NN 300) below 
which all eddies would die out. The critical Reynolds number Uh/v was formed 
using the velocity U of the moving wall and the separation distance h, where v 
is the kinematic viscosity. It was postulated that the flow next to the wall was 
equivalent to a Couette flow. The laminar sublayer thickness 8, could then be 
estimated by substituting 8, for the separation distance in the stability analysis. 
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In  1932, Fage & Townend studied the fluctuation field close to the surface 
using an ultramicroscope for following minute particles in water. They found no 
evidence of an eddy-free region near the wall. An interesting discussion of this 
work is given by Taylor (1932) who examined the possible connexion between 
special types of disturbances where the velocity distributions were known and 
the turbulent fluctuation field found by Fage & Townend (1932). These experi- 
mental results were confirmed by later hot-wire measurements in air by Laufer 
(1950, 1953) and Kelbanoff (1954). Instead of being eddy free, the turbulence 
level, as given by the ratio of u’ the root-mean-square value of the velocity fluctua- 
tion in the flow direction to the local mean velocity C$ reached a maximum value of 
approximately 0.4 close to the wall. Also the turbulent shear stress, as deduced 
from the mean-flow measurements, did not vanish in a thin region next to the 
wall, but instead varied continuously from zero a t  the wall to the level of the 
wall shear. Thus it has been clear for some time that a theory of the ‘ laminar ’ sub- 
layer must account for the fact that the flow is turbulent all the way to the wall. 

There is now a relative wealth of experimental information on the fluctuation 
field close to the wall of a turbulent flow. What is needed is a theoretical structure 
that will provide a rational foundation for the understanding and interpretation 
of the experimental observations. Several recent attemphs have been made to 
develop phenomenological models for the flow in the sublayer. On the basis of 
some observations using dye in water, Einstein & Li (1956) were led to postulate 
the periodic growth and decay of a true laminar region near the wall. An equiva- 
lent model has been proposed by Hanratty (1956). However, in all these cases, 
agreement with the measurements of the mean and fluctuation field is sensitive 
to the choice of critical parameters as well as to arbitrary and sometimes incon- 
sistent assumptions concerning the physical processes. The purpose of this paper 
is to make a start towards the development of a theory for the sublayer which 
follows from the Navier-Stokes equations without the need for phenomenological 
assumptions or tinkering with adjustable parameters. 

We have already suggested that the sublayer is only a special part of the 
general turbulent fluctuation fleld in a bounded shear flow. The aim of the theory 
will be to describe as far as possible the direct influence of the wall on the 
fluctuation field. The turbulent field outside of this region of direct influence 
is assumed to be known on the basis of the experimental measurements. This 
knowledge is essential in the development of the sublayer analysis. Fortunately 
we need not be concerned with shear flow turbulence in all its complexity, since 
only certain fairly simple aspects of such flows are significant for this problem. 
However, some of the simple features have been obscured by the accepted 
methods for presenting the experimental results. It is customary to determine 
the space scales or wave-numbers for the turbulent measurements by using 
Taylor’s hypothesis (Taylor 1938) to justify the necessary space-time transforma- 
tion. Our first step will be to show that this hypothesis, which was introduced to  
represent the turbulence behind a grid in a wind tunnel, is not valid in a shear 
flow, especially near a wall. This analysis will provide a basis for re-interpreting 
the experimental measurements and will make possible some important simplifi- 
cations in the subsequent development of the theory. 
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2. Taylor’s hypothesis in a shear flow 
Taylor’s hypothesis, which has been amply verified for a uniform low-turbu- 

lence flow involves two assumptions: * 

(a )  the turbulence pattern is convected past the measuring point with the 
local mean speed; 

( b )  the turbulent fluctuating velocities are small enough compared to the 
mean motion to insure little change in the shape of an eddy as it is carried past 
a fixed point. 

The use of this hypothesis in a shear flow has previously been questioned by 
Lin (1953). Essentially, Lin investigated the conditions for negligible eddy 
distortion and showed that there is ‘no general justification of extending Taylor’s 
hypothesis to the case of shear flow.’ He found that unless an eddy component 
had a scale much less than the boundary-layer thickness, it  would suffer signifi- 
cant distortion due to the mean-flow shearing motion while being carried past 
the measuring point by the mean flow. However, Lin’s analysis did not lead to 
an alternative procedure for determining the turbulence scales. 

We will show that, in general, assumption (a )  cannot be valid in a turbulent 
shear flow. The departure from this assumption in a boundary layer is especially 
significant near the wall. 

Consider a turbulent boundary layer on a flat plate. At  any instant t, the turbu- 
lent fluctuation field in a boundary layer can be represented by a distribution of 
disturbance vorticity components g, 7, and 5 throughout the boundary layer. 
At the wall the vertical perturbation velocity v must vanish. This boundary con- 
dition can be satisfied by adding an image vorticity distribution on the opposite 
side of the wall. Now, associated with the vorticity a t  a point P’ in the boundary 
layer, there is an induced velocity a t  the point P. The total velocity perturbation 
at point P a t  any instant can then be found by integrating over the boundary- 
layer and image-system perturbation vorticity fields. The extent of the region 
over which the integration must be carried out depends on the scale of turbulence. 
If only small-scale motions are present then the region of integration can be 
confined to the vicinity of P. There should not be any significant correlation 
between velocities at the point P and random small-scale vorticity a t  distances 
from P many times the scale of the disturbances. If large-scale motions are pre- 
sent then the integration must extend at  least over the distances for which 
these large-scale motions are significantly correlated. 

A typical one-dimensional energy spectrum for the velocity perturbation u 
in the flow direction at ylS = 0.58 near the centre of a boundary layer is shown 
in figure 1, where y is the distance from the wall and 6 is the boundary-layer 
thickness. If we can assume for the moment that this disturbance field is being 
carried along by the mean flow in accordance with Taylor’s hypothesis, then the 
frequency can be converted into a measure of the space scale L by the relation 
L = UJf, where is the velocity of the local mean flow (we will show that this is 
justified in the central region of the boundary layer). 

Figure 1 also shows the contribution to the total energy 2 as a function of the 
scale of the motion. It is evident that fully half of the energy is contributed by 
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turbulence whose scale is more than twice the boundary-layer t,hickness, as first 
noted by Townsend (1951). Thus the velocity perturbation at a point P does not 
depend significantly on the vorticity in the immediate vicinity of P, but rather 
on the vorticity over an extensive region of the boundary layer. 

Since the vorticity travels with the fluid particles, the apparent velocity with 
which a disturbance sweeps past the measuring point P may therefore be sub- 
stantially different from the local mean velocity at P. For the large-scale motions, 
this disturbance velocity will correspond to the mean velocity near the middle of 
the boundary layer. Therefore for points P close to the wall, where the mean 
velocity is low, we would expect the disturbance velocity to be greater than the 
local mean velocity; for points P near the outer edge of the boundary layer, the 
disturbance velocity should be less than the local mean velocity. 

\ 

The space-time correlation data of Favre, Gaviglio & Dumas (1957, 1958) 
provide a basis for determining whether these deductions are correct. If P ( f )  
represents the percentage of turbulent energy associated with the frequency f ,  
and Taylor’s hypothesis is satisfied, then the auto-correlation coefficient R, of the 
u‘ fluctuation at  the points xo and (xo +x), can be written as 

R, = lorn P ( f )  cos (T f )  d, ,  
_ _ _  

where R, = u(xo) u(xo + x)/u2(xo), and xo represents the point P. The longitudinal 
correlation coefficient calculated in this way should then agree with the longi- 
tudinal correlation coefficient measured directly with two hot wires. 

This auto-correlation coefficient has been calculated using the energy spectrum 
measured a t  one of Favre’s test points and is shown in figure 2. The integration is 
onlycarriedout to fmax = 1000 c/s, but this includes 98% of the energy. In figure 2, 
two additional correlation curves are shown for which the integration was ter- 
minated at smaller values of the frequency, therefore eliminating the con- 
tribution of the small eddies. A frequency of 400 c/s corresponds to a longitudinal 
scale of about 2.4 cm which compares with a boundary-layer thickness of 3.4 cm. 
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It is evident that the correlation coefficient at large distances is not significantly 
affected by the small eddies. We shall confine our attention to the portion of 
the correlation curve determined by the large scale eddies so that R, will be less 
than 0.4. 

0.8 
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x/U,  (msec) 
FIGURE 2. Effect of frequency cut-off and disturbance velocity on auto-correlation 
coefficient. Data from Favre et al.: y/8 = 0.03, U,/U,  = 0.54; 0, f,, = 1000; 
A,f,, = 600; O,f,, = 400. 

If the velocity of the disturbance U,, associated with these large-scale eddies 
differs from the local mean velocity q, U, rather than lJ must be used in the 
formula for computing the correlation coefficient from the energy spectrum at a 
fixed point. Thus, a t  a fixed value of R,, the computed correlation curve should 
be shifted horizontally where the new horizontal co-ordinate x’ = xU,lq. 
Only the portion of the curve dominated by the large eddies should be shifted in 
this way, since as the eddy size is reduced, the disturbance velocity approaches 
the local mean velocity. 

One of the figures from Pavre’s (1958) paper is reproduced in figure 3. Auto- 
correlation curves using Taylor’s hypothesis and longitudinal space correlations 
measured with two hot wires are shown for four positions across a boundary layer. 
While there is the usual experimental scatter, there is a systematic difference 
between the two sets of curves below R, z 0.4 depending on the location of the 
measuring point in the boundary layer. Close to the wall the measured longi- 
tudinal correlation curves are to the right of the calculated auto-correlation 
curves. Near the outer edge of the boundary layer, the measured longitudinal 
correlation curve is displaced in the opposite direction. At  y/6 = 0-24 the differ- 
ence between the two curves is lost in the scatter of the data. 
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As far as they go, these measurements are consistent with the picture in which 
the large-scale disturbances which contain most of the energy move downstream 
at a mean velocity characteristic of the central region of the boundary-layer 
fluid. At yl6 = 0.24 in Favre's boundary layer, the velocity is approximately 
equal to 0.78 of the free-stream velocity U,. The horizontal shift in the correlation 
curve that would be expected at y/6 = 0.03 if the disturbance velocity were 
equal to 0.78U, is also shown in figure 2 .  This shift is approximately of the same 

1.0 d 
0.8 4 

0 2 4 6 8 10 I2  14 16 
i~ , 'U, l ,  T 

1.0 a ' 
0.8 

I?,  0.6 

0.4 

0.2 

0 

0 2 4 6 8 10 12 14 16 
,x,'U;, T 

L O  d 
0 8  

0 6  

0 4  

0 2  

0 

0 2 4 6 8 10 12 14 16 

Ix: U:, T 

I .o 4 
Q.8 -b 
0.6 

0 4  

0.2 

0 

0 2 4 6 8 10 12 14 16 
l*ICI),T 

FIGURE 3. Comparison of auto-correlation and longitudinal correlation coefficients from 
Favre et al. 0, Auto-correlations; m, longitudinal space correlations. (a) y/& = 0.77, 
R, = 27,900; (b)  y/& = 0.24, R,7 = 14,000; (c) y/S = 0.15, R, = 27,900; (d) y/S = 0.03, 
R,3 = 27,900. 

magnitude as the shift found in figure 3. A similar divergence of the calculated 
auto-correlation and measured longitudinal correlation coefficients at large scales 
has been observed by Hlebanoff and led him to remark that 'this divergence 
gives rise to the interesting speculation that the large-scale motions have their 
own characteristic velocity different from the mean speed '. 

We conclude, on the basis of this analysis, that in a boundary layer, or in fact, 
in any shear flow, the disturbance velocity at  a point P is in general different from 
the local mean velocity. Therefore, the customary conversion of experimental 
spectral measurements into wave-numbers is invalid in a boundary layer any- 
where near the wall except for the small-scale structure of the turbulence. 

In  the following sections of this paper, many of the numerical results will be 
based on the experimental measurements of Hlebanoff. The limited auto- 
correlation and longitudinal correlation measurements he made do not extend to 
large enough scales to establish a value for the disturbance velocity of the large 
eddies with any precision. Accordingly, we shall use the general information 
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obtained from Favre’s data and somewhat arbitrarily set U, = 0.8Ul for the 
large eddies. This is the value of the mean velocity at  y/S = 0.27. We will also 
need to establish an approximate upper limit to the frequency range for which 
this disturbance velocity applies. Klebanoff’s auto- and longitudinal correlation 
measurements indicate that for R, < 0.5, the expected shift of the longitudinal 
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FIGURE 4. Auto-correlation functions for Klebanoff boundary-layer data. 

correlation curve with respect to the auto-correlation curve will have occurred. 
Calculations for R, as a function of frequency at different separations are shown 
in figure 4 for y/6 = 0.05. If we consider the curve for x / q  = 1.8, it  is evident that 
the frequencies > 300 makes a minor contribution to the correlation coefficient, 
i.e. the frequencies between 300 and 1000 only produce a moderate oscillation 
about the final value of Rx = 0.43. A frequency of 300 CIS corresponds to an eddy 
scale of L = UJf M 4 cm or approximately +6. (Frequencies in the range between 
0 < f G 300c/s account for about 80% of the fluctuation energy.) We will 
therefore limit the specification U, = O-SU, to frequencies from 0 to 300 c/s. For 
high frequencies, or small-scale motions, the disturbances move downstream with 
the local mean velocity. A very crude guess for the dependence of disturbance 
velocity on frequency at y/S = 0.05 will be given in the section on microscales. 
But Klebanoff’s experimental data do not provide any clear basis for guessing 
at this dependence in trhe sublayer. As will be mentioned in the section on the 
pressure field, it may be possible to establish the variation of disturbance velocity 
with frequency for the higher frequencies from the measurements of wall pres- 
sure fluctuations. But at the present this information is not available and this 
lack of knowledge will necessarily limit certain possible applications of the 
present theory. 
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3. The fluctuation field across a turbulent flow 
When the experimental measurements themselves are examined, they reveaI 

a rather striking similarity of the energy spectra at different points in the fully 
turbulent part of the flow. The normalized energy spectra across a boundary 
layer as measured by Klebanoff are shown in figure 5. Over the inner half of the 
boundary layer, in the region free of intermittency, the spectra for the energy 
containing eddies appear to agree within the experimental error. Differences in 
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FIGURE 5. Normalized energy spectra at y/6 = 0.05 across boundary layer. 

0, Z’/& = 0.05; a, Y/6 = 0.20; A, IT/& = 0.58. 

the high-frequency end of the spectra would be revealed by using a logarithmic 
scale rather than a linear scale, but these portions of the spectra provide a negli- 
gible contribution to the total fluctuation energy. The same results are found for 
pipe- or channel-flow spectral data. This similarity of the energy-containing 
portion of the frequency spectra is just what would be expected from the previous 
analysis, since the disturbance velocity for the large-scale eddies should not vary 
significantly across the shear flow. At each point across the boundary layer, 
the hot-wire probe responds to disturbances associated with the same large-scale 
eddy pattern and so the spectral distribution should be similar. On the other 
hand, the fluctuation energy varies from point to point. Figure 6 shows the 
variation of the root-mean-square fluctuation velocities u‘, v’ and w‘ across the 
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boundary layer. It can be seen that the u' fluctuation level increases by a factor 
of 2 between y/S = 0.6 and y/S = 0.05. Why does the fluctuation level vary if we 
are measuring perturbations due to the same large-scale eddy system? 

A simple explanation for these observations can be suggested by considering 
the effect of the wall on the perturbation field. If no wall were present, the in- 
duced velocity field associated with vorticity at P' would be symmetrical about 
P'. When the wall is present, the induced velocity field of the image vorticity 
for P' must be added to the field directly due to P'. This will cause an increase in 
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FIGURE 6. Variation of fluctuation levels across boundary layer. x , u'/U1; 

the induced velocities between P' and the wall and a decrease in the induced 
velocities beyond P'. This image effect may be the reason why the fluctuation 
level associated with the same large-scale vorticity increases towards the wall. 

So far we have managed to avoid specifying the extent of the sublayer. This 
has been a somewhat ambiguous question and has been subject! to different 
interpretation by different authors. In  figure 7, the variation of the u' fluctuation 
and the turbulent shear stress puV near the wall are shown for a boundary layer 
and a pipe flow. The variation of puV has been calculated using the measured 
mean velocity profile and the fact that the total shear stress is essentially con- 
stant near the wall. As is customary, the data are presented in terms of the fric- 
tion velocity U, = (rw/p)&, where r, is the friction a t  the wall and p is the density. 
We can describe what is observed in the following general terms. Outside the 
wall region, the turbulent shear stress and the u' fluctuation vary slowly com- 
pared to the variations that are found in the wall region. Entering the wall 



250 Joseph Sternberg 

region, the uf fluctuation first increases rising to a maximum well inside the wall 
region. At approximately the point where uf starts to rise, the shear stress starts 
to decrease slowly. The rapid decrease in uf is confined to the inner 25% of 
the wall region. 

It would appear that the increase in fluctuation level in the wall region is 
greater for the boundary-layer flow. But this may not be true. With the existing 
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FIGURE 7. Fluctuation and turbulent shear stress near the wall from 
Klebanoff and Laufer. 

data, it is not possible to pinpoint the edge of the wall region in the boundary- 
layer case because of the relatively large variation of uf outside the wa.U region. 
In  figure 7, the fluctuation level is normalized in terms of the fluctuation level 
a t  the edge of the wall region and so the curve in figure 7 is somewhat arbitrary. 
Furthermore, the fluctuation level in the wall region should probably be com- 
pared with an extrapolation to the wall of the zcf variation outside the wall region. 
This would reduce the apparent rise in fluctuation level for the boundary layer. 

In the theory given in this paper, the sublayer and the wall region are the same 
so that the sublayer extends from the wall to the fully developed turbulent part 
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of the flow. There is no theoretical distinction between an inner (laminar’ sub- 
layer and a transition region although the rapid changes do primarily occur in 
the inner portion of the sublayer. 

The physical picture of the large-scale eddies containing most of the turbulent 
energy moving downstream at a velocity of the order of 0.8 of the free-stream 
velocity U, is reminiscent of the physical picture of oscillations in a laminar 
boundary layer. In  that case typical waves move downstream with a velocity 
U, z and have wavelengths of the order of 3 to 5 8. In  the equations of motion 
for the perturbations in a laminar boundary layer, the term representing the 
action of viscosity is negligible except in two limited regions, the critical layer 
and the inner viscous layer close to the wall. We shall show that this inner viscous 
layer for fluctuations in a laminar boundary layer corresponds directly to the 
sublayer for a turbulent flow. Thus the sublayer is the region where the turbulent 
fluctuations in the shear flow are damped by viscosity. 

The existence ofa ( dissipationlayer ’ near the wall was first suggested by Towns- 
end on the basis of a study of the turbulent energy balance in the boundary layer. 
He concluded that the bulk of the turbulent-energy dissipation takes place by 
direct viscous action on the large eddies in a layer which he thought was ‘most 
probably in contact with the laminar sublayer’. In  the present theory we find 
that the sublayer itself is a dissipative region with its structure primarily deter- 
mined by the large scale fluctuations in the turbulence. 

4. Equations for the fluctuation field 
The equations of motion for the fluctuations in a turbulent field (Lin 1959, 

p. 246) are obtained by subtracting the well-known Reynolds equation for the 
mean flow from the complete Navier-Stokes equations. We restrict our attention 
to a steady flow in which the mean velocity only has a component parallel to the 
flow direction, so that U = U(y) and V = W = 0,  where U ,  V and W are the three 
components of the mean motion. We will also assume that the statistical proper- 
ties of the turbulent field such as 2 and UV only vary with y. These assumptions 
are reasonably well satisfied by a two-dimensional boundary-layer flow or a 
pipe flow. Then if u, v and w are the disturbance velocities the components of 
total velocity are U + u ,  v and w, and the pressure is P+p.  We can then write 
down the three equations of motion for the fluctuating field, 

(1) 
a -  _-- a~ au au au au au 

-+U-+v-+u-+v-+w- = 
at ax ay ay ay aZ pax a Y  

ap + vv2u + - (uv) ,  

a -  
-+u-+u-+v-+u7- =--- ap + vv2v + - (VZ) ,  ( 2 )  
av aU av aU av 
at a-z ax ay az pay aY 

(3) 
aw 2tLj aw aw aw 1 ap a -  
-+u-+u--+v-+w- = ---+vV2w+-(wv) 
at ax arc ay aZ p a x  aY 

and the continuity equation 
au av azu 
ax ay a2 
-+-+- = 0. (4) 
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In  each equation the mean term on the right is the average of the three non- 
linear terms on the left. We are in fact going to neglect these non-linear terms but 
some justification for this step is certainly required. For instance, the term 
a(G)/ay is zero at  the wall and zero outside the sublayer, but reaches a peak value 
in the inner portion of the sublayer a t  about U,y/v M 10 (see figure 7). We can 
make this justification a posteriori by finding a solution without the non-linear 
terms and then comparing the magnitude of a(G)/ay with the linear terms that 
have been retained. At this point we will state the results. The acceleration term 
aulat is the leading linear term. At the point where U,y/v M 10, a(G)/ay is about 
15% of [(&@t)2]i. At the same point the linear convective terms such as U(au/dx) 
are about 40 % of aujat. It is evident that the non-linear terms are significant 
though smaller than the linear terms. When the balance of terms is examined 
over the frequency spectrum it is found that at  the low end of the frequency 
spectrum, at say lOc/s, the maximum value of a(G)/ay may be comparable in 
magnitude to the terms that are retained. But linearization of the equations 
appears to be a reasonable first step towards a theory. Of course the non-linear 
terms would be essential in any theory of turbulence. But here the turbulent 
field a t  the edge of the sublayer as well as the mean flow in the sublayer are 
assumed to be known from the experiments. Our purpose is merely to represent 
the fluctuation field between the known field a t  the edge of the sublayer and the 
wall. 

The fluctuation field can now be represented by a superposition of Fourier 
components, each component of which can be separately analyzed. The type of 
disturbance that will be usedwill be based onour interpretation of the experimental 
data. It should be emphasized that we are not concerned with the energy balance 
of the frequency components as is the case for the study of oscillations in a laminar 
flow. No stability calculations are involved in the description of the sublayer. 

5. Simplified theory 
We have previously shown that most of the fluctuation energy near the wall 

is an induced field arising from vorticit y distributed throughout the boundary 
layer. The type of elementary disturbance that is appropriate then depends on 
the nature of the large-scale vorticity in the boundary layer, and not on the vor- 
ticity field at  the edge of the sublayer. Inasmuch as the root-mean-square w' 
fluctuation is approximately 0.7 of the root-mean-square u' fluctuation (figure 6), 
some type of 'three-dimensional ' disturbance would appear to be necessary. 

Physically, one might expect the shearing action of the mean flow to stretch 
out vortex lines in the direction of the mean flow. There might then be a pre- 
ference in the large-scale motions for vortices nearly parallel rather than per- 
pendicular to the wall. Since the induced velocities near the wall associated with 
a vortex line in the boundary layer are normal to the vortex line, the simple form 
of oblique disturbance at  the edge of the sublayer shown in figure 8 would appear 
to be appropriate. In  this elementary oblique disturbance, the lines perpendicu- 
lar to the E-direction are lines of constant phase. The disturbance velocity q,  
in the (x, 2)-plane, is in the 5-direction and is periodic in space in the 5-direction 
with a wavelength A,. The disturbance velocities u and w outside the sublayer are 
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then given by u = qcos8, w = qsint9, and the wavelength in the x-direction 

Actually, the form of elementary oblique disturbance that satisfies the com- 
plete linearized equations ( l ) ,  ( 2 )  and (3) is more complicated than the dis- 
turbance shown in figure 8. The disturbance velocity q must also have a com- 
ponent normal to [ to satisfy the equations of motion. However, in this section, 
we will develop a simplified theory in which the linear convective terms in equa- 
tions (l), (2) and (3) are neglected. The form of disturbance shown in figure 8 
does satisfy these simplified equations ( 5 ) ,  (6) and (7)  (see below). 

A, = hg/COS8. 

FIGURE 8. Assumed form of oblique disturbance at  edge of sublayer. 

As shown by the experimental data, the sublayer is very small and the scale 
of the energy containing eddies is large. Under these conditions, the variation of 
the perturbation velocity with y in the vicinity of the sublayer can be neglected 
compared to the variation inside the sublayer. The total fluctuation field can then 
be represented by a superposition of these elementary oblique disturbances. 

This oblique disturbance is carried downstream with the velocity U, in the 
x-direction. We now consider the disturbance velocities in the flow just outside 
the sublayer. Introducing complex notation, with /I = Snyf and kx = %-/A,, we 
have 

u = Re {Ce exp [i(k,x + kzz  -/It)]}, w = Re {Be exp [i(kxx + ksz - /It)l}, 

where U, = ,8/kx, tan 0 = R,/Ce, and Re stands for real part. Similarly, the fluctu- 
ating pressure field can be represented as 

p = Re{peexp[i(k,x+7c,z-/It)l}, 
where p ,  is complex. 

Inside the sublayer, we have 

u = Re{h(y)exp [i(k,x+Ic,z-,!?t)]), w = Re{k(y)exp [ i (k ,x+Ic ,z - / I t ) ] } .  
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There will also be a velocity component normal to the wall inside and outside the 
sublayer which we represent by 

v = Re(g(y)exp[i(k,z+ k,x-Pt)]), 

where the functions h(y) ,  k(y), and g(y) are complex. At the wall y = 0, 
u = v = w = 0. 

Close to the wall where u + 0 and v -+ 0, some of the linear terms in equations 
(1)) (2) and (3) can be neglected. The second term in each equation becomes small 
compared to the leading term. For instance, au/ax = ik,u, i?u/at = - ipu, so that 

Further, for all disturbances except those at  large 0,  the term vd Uldy  is a,lso small 
compared to au/at close to the wall. The vertical velocity can be found from the 
u- and w-components using the continuity equation avlay = - &/ax - i?w/az, and 
the spatial derivatives given by 

aujax = ikZu, awpz = ikZZu = ikzw tan 0. 

Then v = Re [ - s,” ik,u(y) dy - 

or v = O($k,uysec2B) so that 

As we shall show later, the thickness of the viscous region for a disturbance of 
frequency f is 

Then 

For any frequency of interest only the derivatives with respect to y need be 
retained. The equations of motion can then be simplified t o  the following form: 

together with the continuity equation. 
We cannot expect the solutions for the fluctuation field as given by these 

equations to be more than a first approximation. While the neglected convective 
terms are small very close to the wall, they are not small throughout the whole 
sublayer. By the edge of the inner part of the sublayer, at  y/6 = 0-OOE,  U / U ,  has 
increased to 0.5. In  addition, disturbances at  high obliquity cannot be represented 
by equation (5) since the neglected term v d U / d y  would then become large. As 
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will be mentioned later, there are indications that disturbances with 8 near 90" 
are important at the low-frequency end of the spectrum. In order to evaluate 
properly how much is left out by restricting the range of 8, we would like to know 
the orientation distribution of the energy containing eddies occupying the middle 
region of the boundary layer. Townsend (1956) has sought to determine eddy 
orientation in shear flows by comparing the transverse correlation functions. He 
concludes that in the main region of a turbulent boundary layer the larger eddies, 
containing perhaps SO yo of the turbulent energy, a,re strongly oriented in the 
flow direction. However, this method of analysis, in which possible eddy patterns 
are assumed, is rather speculative and it is not clear how much weight should 
be given to it. Nevertheless, Townsend's studies do suggest that large eddies near 
0 = 90" may play an important role in the fluctuation field. 

On the other hand, the wave-numbers for the oblique disturbances which con- 
tribute to the total disturbance at  the wave-number k,  are given by 

kc = kJcos8, so that kC:5-fco as 8-+ 90". 

Since the turbulent energy normally falls off very rapidly with increasing wave- 
number, there should he little contribution to the u fluctuation at  a fixed kx 
from disturbances with large 8. While this argument does not apply where 
kx --f 0, it should apply to the wave numbers lc, containing most of t h e 2  energy. 

It is evident that, to the order of simplification represented by equations ( 5 ) ,  
(6) and (7),  there is no coupling between the ZL and w fluctuation fields and the 
u- and w-components can be solved for separately. In  fact, 2 and 3 have the 
same variation with y in the viscous region. This is, of course, not true for solutions 
to the complete linearizedformof equations (I) ,  ( 2 )  and (3). In  that case, the phase 
angle between the complex functions h ( y )  and k(y) varies with y, so t h a t 2  and 
w2 for a disturbance vary differently with y in the viscous region. 

An important feature of equations ( 5 ) )  (6) and (7) is that the pressure field 
is essentially invariant with y in the viscous region. We have 

__ 

From equation (6)) 

Since ac/at = -ipv, 

or finally ay a (jG)/& l a p  
(g) = 0($kiy2sec28). 

Similarly, it  can be shown that 

Now at the edge of the viscous region, where y = S,, k,S, = 0 (2mdf4/Uw). With 
U ,  = 1-25 x 1O3cm/sec, and f = 300c/s, k,S,s = 3-3 x < 1. In other 
words, in consequence of the fact that v is of higher order than q, the spatial 
pressure gradient associated with an oblique disturbance ap@ < ap/ay in 
the viscous region. 

or 
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6. Longitudinal fluctuations 
To find the solution to equation ( 5 ) ,  we represent the disturbance as the sum 

of two components, where u = u1 + u2. The component u1 represents the distur- 
bance velocity before account is taken of the direct wall effect. As previously 
discussed, we assume that the variation of u1 with y in the vicinity of the viscous 
region is negligible compared to the variation of u that occurs inside the viscous 
region. Since the convective terms have been neglected u1 is not affected hy the 
mean flow and is constant throughout the viscous region. u, represents the dis- 
turbance velocity component directly associated with the wall friction. Thus, 
at  the edge of the viscous region u2 -+ 0, and at the wall u2 = - ul. If we write 
equation ( 5 )  as 

+ u 2 )  - 1 aP + + a*) 
at - Pax a92 ' 

then the equations for ul and u2 throughout the viscous region are 

atl2 a Z u 2  au, l a p  -+--=o, - 
2t pax at ay2 

= u--, 

where, as we have already shown, p-laplax does not vary through the viscous 
region.? Substituting u2 = h2(y) exp [i(k,x-@t)], we havehk + u-liph, = 0,  which 
which has the simple solution 

h, = -esp [ - (1 - i) (p/2v)ay], 
so that finally 

u = ul+u2 = Re(C,(l- exp[-(l-i)(P/~i~)ay])esp[i(lc,x-Pt)I}. 

It is evident that the region of rapid change in u is O( ui/f&) as previously asserted 
so that the extent of the viscous region is different for each frequency, decreasing 
in size as the frequency is increased. In  order to compare these results with experi- 
ment, we calculate 2 = +h(y) h*(y), where the asterisk denotes the complex con- 
jugate. Mroducing the dimensionless variable Y = (P/3v)* y, we find 

zc"/fc; = 1 - 2e-z- cos Y + e-2Y (8) 

for the total disturbance energy. This function is shown in figure 9. For each 
frequency component, s / + C t  -+ 1 at Y M 5. The rapid decrease of poccurs  for 
0 < Y < 2. Entering the viscous region G/@ first increases reaching a peak 
value a t  Y = 2.2. Examination of the details of the solution shows that this 
increase of disturbance level entering the viscous region arises because near the 
outer edge of the viscous region u1 and u2 have an in-phase component instead of 
being 180" out of phase as a t  the wall. 

Figures 5 and 9 can now be used to calculate the variation of the root-mean- 
square fluctuation level u' near the wall. According to figure 5 ,  the energy spectra 
are similar between y/6 = 0.05 and y/6 = 0.58. Then the disturbance energy for 
each frequency outside the viscous region is given by setting $C: = Fg at 
y/6 = 0.05 from figure 5. In  the calculations, it  has been assumed that Cq is 

t This same separation of equation ( 5 )  was used by Prandtl (1921) in discussing oscilla- 
tions in a laminar boundary layer. 
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constant between the lowest frequency experimentally accessible and f = 0. 
Strictly speaking, C: .+ 0 as f .+ 0. According to the present theory, for very low 
frequencies, say f < 1 c/s, the point y/6 = 0-05 is in the inner portion of the viscous 
region (assuming that the simplified theory can be applied at such low frequen- 
cies), and the energy at y/S = 0-05 should therefore -+ 0 as f + 0. However, 
the energy for 0 < f < 1 c/s is negligible and makes no contribution to the 
calculations. Of course, without a wall present, the one-dimensional energy 
spectrum C: of a turbulent flow theoretically approaches a finite maximum 
as f + O .  

1.2 -I 
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FIGURE 9. Theoretical variation of fluctuation energy in the viscous region. 

For each frequency, the variation of 2 with y is obtained from figure 9. The 
u2spectra for various values of y can then be computed and are shown in figure 10. 
As y/6 increases, the spectra approach the spectrum outside the sublayer. Inte- 
grating for each value of y/S and taking the square root, we finally obtain the 
variation of u' near the wall. In  figure 11 a, the ordinate u'/u; is the ratio of u' 
inside the viscous region to the value of ui outside. According to the calculations, 
u'/ui + 1 a t  about y/6 = 0.035. The rise in the experimental u' fluctuation level 
near the wall appears to start for 0.03 < y/B < 0-4, but it is not possible to establish 
this point with any precision because of the variation of u' outside the sublayer. 
A comparison of Laufer's pipe data with similar theoretical calculations is shown 
in figure 11 b. In  both cases, the theory correctly predicts the total extent of the 
sublayer. On the basis of these calculations, we feel justified in identifying the 
viscous region in the theory with the sublayer in the experiments. On the other 
hand, the rise in fluctuation level entering the sublayer is much greater than the 
small rise found in the theory. Actually, the existence of an increase in fluctuation 
level in both theory and experiment is undoubtedly fortuitous. As mentioned 
previously, the rise in the theory depends on a delicate phase relationship which 
could hardly be expected to be unaffected by the neglected convective terms. By 

17 Fluid Mech. 13 
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y/6 = 0.01, the ratio qlU, which is a measure of the relative magnitude of the 
convective terms is approximately 0.6, increasing to 0.75 by y/6 = 0.035. Thus, 
the agreement between theory and experiment should not be good in the outer 
region. 

As shown in figure 10, there is a marked change in the spectral distribution 
approaching the wall. Most of the energy is taken from the largest-scale motions 
resulting in a fairly flat spectrum close to the wall. One spectral measurement was 
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FIGURE 10. Energy spectra in the sublayer based on spectrum outside sublayer. 

Klebanoff spectra: m, y/6 = 0.05; 0, y/6 = 0.001. 

also made by Klebanoff at y/6 = 0.0011, deep in the sublayer. These measure- 
ments are also shown in figure 10 where they can be compared with the calculated 
spectrum for y/6 = 0.0011. Qualitatively, the measurements confirm the expec- 
tations of the theory. However, there is a significant difference in magnitude 
between theory and experiment at y/6 = 0.0011. A somewhat different way of 
applying the theory suggests itself. 

Since we expect theory to be better near the wall, we can calculate the spectra 
in the sublayer based on the experimental spectrum at y/6 = 0.001 1 rather than 
the spectrum outside the sublayer. Thus, using figure 9, the variation of +Ci 
with f is chosen so that the theoretical and experimental spectra coincide a t  
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y/S = 0.001 1. Then the corresponding spectra can be computed at other values of 
y/S. The results are shown in figure 12 and the corresponding variation of u’/u; is 
shown in figure 11 a. Here, of course, u‘/u; for theory and experiment have been 
set equal a t  y/S = 0.001 1. The theoretical variation of u’/u; is now in much better 

20 - 

- -Theory using spectrum at y/6 = 0001 1 

- 
i i i  

0 0.002 0004 0006 0008 0010 0.012 
/ / a  

FIGURE 11. Comparison of theory and experiment for turbulent fluctuations in the 
sublayer: ( a )  boundary layer; ( b )  pipe flow, where a = pipe radius, R = 500,000; 
0, data from Laufer. 

accord with the experiments in the inner part of the sublayer, at least up to 
y/S = 0.005 at which point U/U, M 0.3. Beyond y/S = 0.005, the theoretical 
curve rapidly departs from the experimental data with t,he theory rising to a 
inuch higher value of u’ outside the sublayer. 

17-2 
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A comparison of the experimental spectrum at y/S = 0.05 and the theoretical 
spectrum at y/6 = 0.005 (figure 12) indicates that the higher fluctuation level 
at y/6 = 0.005 is due to an increase in the energy in the large-scale eddies. This 

400 

300 

h 

0 
% . 3 200 

2 
Y 

100 

0 

& \ ' \  

0 100 700 300 

f 
FIGURE 12. Energy spectra in the sublayer based on spectrum inside sublayer. 

Klebanoff spectre: 0, y/S = 0.0011; n, yjS = 0.05. 

is consistent with the theory in that at y/6 = 0.005, all frequencies above 
f = 600 cis should still be outside the viscous region. Therefore, it seems probable 
that the spectra shown in figure 12 are a better representation of the spectra close 
to the wall than are the spectra in figure 10. 

7. Transverse fluctuations and the shear stress 
Expressions for UV and 2 for an oblique disturbance can also be obtained from 

the theory, but there are important difficulties in the way of using these expres- 
sions for comparison with the experiments. The limited comparisons that can 
be made indicate that the vertical velocity v and the shear stress - UV given by 
the theory may be much too small, at least at the low end of the frequency 
spectrum. Suppose we consider the disturbance velocities u, and v, associated 
with an oblique disturbance a t  angle 8, where kt = IcJcos 8. Since equations ( 5 )  
and (7) are identical in form and p-l(ap/az) = p-l(ap/ax) tan@, the relation 
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- we = uetanO holds throughout the viscous region. We can then readily find 
v 2  - 1 

where 

B - Z d Y )  S*(Y)I so that 
- 

v: = (2nfvlU;) @;b" (1 + tan20)2T( Y ) ,  (9) 

T (  Y )  = {( 1 - 2e-I. cos Y + ec2I7) + 3 Y e-I' (cos Y - sin Y )  - 2 Y + 3 Y2}.  

Here C, is the magnitude of uB at the edge of the viscous region. 
Strictly speaking, the theory only gives the velocity field associated with a 

given disturbance in the viscous region for that frequency. It is not at all clear 
how far a simple disturbance can be followed outside the viscous region. This is 
important for the calculation of 2, since v2 for an elementary disturbance varies 
rapidly at the edge of the viscous region whereas 3 is essentially constant. With 
S, = 0 (,,/.If) this would automaticallyrestrict calculations to very small y/S. What 
this seems t o  mean is that the present theory is not capable of predicting the 
experimental results f o r 2  except possibly very close to thewall. It is also evident 
from equation (9) that there is a strong effect of the obliquity 0, and it would be 
necessary in any case to specify the energy distribution of oblique disturbances 
before it would be possible to compute 3 from the theory. 

At the very low frequencies, the viscous region reaches out far enough to permit 
a comparison of sorts with the spectral measurements of v2at y / S  = 0.05, since 
for f = 10 CIS the edge of the viscous region ( Y z 5) is at y / S  z 0.05. If we consider 
a two-dimensional disturbance (0 = 0), then it turns out that 3 at f = 1oc/s 
as given by equation (9) is too small roughly by a factor of 50. This suggests one 
of two things: either (a )  the magnitude of au/ax given by the theory is much too 
small at the very low frequencies; overall, au/ax does appear to be the correct 
order of magnitude (see 3 8); or ( b )  there is a substantial contribution to 2 a t  the 
very low frequencies from highly oblique disturbances; this would imply large 
vortices nearly aligned with the flow direction. 

The computation of UV is beset by similar difficulties. According to the 
simplified theory, (G)@ = 3 Re {g (y )  h*(y)}  from which we obtain 

- 

(G), = -$Ci(nfv)+ U;1(1+tan28)8(~) (10) 

with X( Y) = (1 - Be-' cos Y + e--2y - 3 Ye-" sin Y ) .  The function X( Y )  is shown 
in figure 13 together with (u"/&CZ,)B. 

It is evident that in the inner portion of the viscous region the relative variation 
of u' and -uV with y for each frequency component is similar to the over-all 
variation of uf and - UV shown in figure 7. Leaving the wall the increase in the 
shear stress lags behind the increase in the fluctuation level. In  both experiment 
and theory, at  the peak of the u' fluctuation - UV is 0.7 t o  0.8 of the shear stress 
outside the viscous region. However, the magnitude of - UV given by the simpli- 
fied theory is definitely too low over and above the fact that v may be too small 
This can be shown in the following way. 

Sufficient data are given by Klebanoff to calculate the spectral variation of 
iEi/u'v' at y / 6  = 0-05. The results of the calculations are shown in figure 14. For 
comparison, the variation of %/u'v' inside the viscous region according to the 
simplified theory is shown in figure 15. The correlation uV/u'd is independent of 0 
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and a comparison with experiment shows whether the phase angles between u 
and w in the theory are a t  all comparable to the phase angles deduced from the 
experiment. Apparently the correlation coefficient does not reach high enough 
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FIGURE 13. Theoretical variation of fluctuation level and turbulent shear stress in 
the viscous region. 

f 
FIGURE 14. Variation of shear correlation coefficient with frequency outside sublayer 

after Klebanoff, 0, y/6 = 0.05. 

values in the viscous region, a t  least at the lower frequencies. The convective 
terms that have been neglected in the simplified theory ought to play a significant 
role in controlling the phase angle between u and v. Therefore, this deficiency of 
the theory is not surprising. 
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Nevertheless, it is possible to draw some conclusions about the nature of the 
shear-stress spectrum in the sublayer, and so about the flow of energy from the 
mean flow to the fluctuating field. As shown by Reichardt (1953), the turbulence 
production -pG(d Uldy)  reaches a maximum in the sublayer at the point where 
pu(dUldy) = i T w .  

0 1 2 3 4 5 

I’ 

FIGURE 15. Theoretical variation of shear correlation coefficient in the viscous region. 

Generally speaking, in the fully developed part of the boundary layer, the 
energy flows from the mean flow into the large-scale eddies. At y/S = 0.05 from 
Klebanoff, 70 % of the shear stress is found between 0 < f < 300, which compares 
with 80 yo of 2 below f = 300. The point where ,u(dU/dy) = +rw is still outside 
the viscous region for the small eddies and the loss in turbulent shear stress 
comes only from the large-scale eddies. This means that the turbulence produc- 
tion goes into ever smaller eddies as the wall is approached as speculated by 
Klebanoff. Therefore the region of maximum turbulence production may be 
relatively unimportant as a source of energy for the large-scale energy-containing 
eddies in the boundary layer. 

8. Microscales 
Important changes in the dissipation derivatives or microscales occur on 

entering the sublayer. Here we will consider two of these derivatives which can 
be discussed, a t  least to a limited extent, using the simplified theory. The longi- 
tudinal microscale can be written as 
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While there are no data in general for the variation of the disturbance velocity
CL withf abovef = 300 c/s a first guess for this variation can be made at y/6 = 0.05.
For separation distances < O-5 cm, the auto-correlation and longitudinal-
correlation curves of Klebanoff appear to coincide. This would suggest that
U, = U, where f = U,/O-5 cm or f z 2 x lo3 c/s. Previously, we have set an upper

Tlimit off = 300 c/s for CV, = 0.SU,. We assume then that the disturbance velocity
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FIGURE 16. Comparison of theory and experiment for transverse
microscale in the sublayer.

varies linearly from 0*8[1,  at f = 300 to U, = C4 at 2000 c/s. Above f = 2000 c/s,
U, is set equal to 4. Integrating, we find that (cP/U~)  (i3~jax)~  = 5.8 which com-
pares with a value of 5.5 from the experiment. Deep in the sublayer  the experi-
mental value for (3u/2x)2  increases by about a factor of 3, but the uncertainty
about the variation of TJ:,, with f is too great to proceed with any theoretical
calculations in this region.

The microscale transverse t,o the wall can be written as

which becomes

- -
(au/ay)2  = gqy) h’*(y)

au 2
(-1aY.

= T+exp { - 2(/3/2~)t  y). (14)

Outside the sublayer, at y/S = O-05, we have assumed a form of disturbance where
&lay = 0, where in realit,y au,By is small but not zero outside the viscous region.
The experimental variation of (62/Z UZ,) (au/ay) 2 is shown in figure 16. Approaching
the wall, there is a very rapid increase in the gradient normal to the wall. A
rapid increase in (au/ay)2 is also predicted by the theory. In fact, according to
equation (12),  (au/ayy will be a maximum at the wall. Calculations have been
carried out at several points in the inner part of the sublayer  based on the
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measured spectrum a t  y/S = 0.0011, and the results are shown in figure 16. It is 
evident that the simplified theory underestimates the value of a t  
y/6 = 0.005, the inner limit of the experimental measurements. A possible 
reason for this discrepancy can be suggested. The large gradients in u in the 
simplified theory are confined to the region very close to the wall. Experiment'ally, 
as shown in figure 11, substantial gradients in u are found over a much greater 
extent of the sublayer. We might anticipate that the simplified theory would 
underestimate (2u/ay)2 away from the wall. 

The much greater experimental value of (&~/ay)~ as compared with ( a z ~ / a x ) ~  
does not reflect a distortion of the small-scale eddies. For instance at y/6 = 0-005, 
the theoretical spectrum for (i3u/ay)2 shows that practically all the contribution 
to ( a u / & ~ ) ~  comes from frequencies < 300 c/s. 

~~ 

9. The pressure field 
Extensive measurements of the pressure fluctuations a t  the boundaries of 

turbulent flows have been made by Willmarth (1958, 1959). He found that the 
major contribution to the pressure fluctuations comes from large-scale fluctua- 
tions. Of particular interest, his space-time correlation measurements show that 
the pressure pattern is convected downstream with a speed of 0.82Ul. This 
observation is in good agreement with the present theory where the large-scale 
fluctuations move downstream a t  the mean velocity of the middle region of the 
boundary layer. I n  fact measurements of the wall pressure field may provide a 
means of establishing experimentally the variation of disturbance velocity with 
frequency for the higher frequencies in the sublayer. Corcos & Winkle (1960) 
have found that by making a spectral resolution of the longitudinal space-time 
correlation a functional relationship between convective velocity and frequency 
can be found. As we would expect theoretically the higher frequencies are 
convected more slowly than the low frequencies. However, theoretical calcula- 
tion of the spectrum and the magnitude of the pressure fluctuations a t  the bound- 
ary layer is another matter. 

The pressure fluctuations in a turbulent shear flow may be much larger than 
in a field of isotropic turbulence at comparable turbulent fluctuation levels. 
This is the case near the edge of the laminar sublayer in a turbulent boundary 
layer. Very large pressure fluctuations are associated with the linear terms in the 
equations of motion. Using the condition tha t  the large eddies move downstream 
with U, z 0*87i,, sufficient measurements of the fluctuation field have been 
made by Klebanoff to  permit an approximate calculation of this pressure field. 
Just  outside the sublayer, retaining all the linear terms, equation (1) becomes 

au au au l a p  
ax ay pax %+U-+v- = 

The fluctuation field a t  the edge of the sublayer is now represented by a super- 
position of Fourier components. Using the same notation as in the previous 
sections, we can write equation (13) as 
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Then the spectral variation of 2 / p 2  is given by 

I n  isotropic turbulence, LL = q, dU,/dy = 0, and the pressure field due to these 
linear terms vanishes. At high frequencies, U, = and the first and third 
terms do not contribute to the pressure field. However, most of the con- 
tribution to the pressure fluctations comes from the moderate frequencies and 
these terms are important. The spectral functions l?! and FG have been measured 
at the edge of the sublayer at y/iS = 0.05, and can be used directly in calculating 
F/p2. An additional assumption must be made in order to determine 

For a given frequency component, the shear correlation coefficient 

Tv/ZL'V' = cosq5, 

where 4 is the phase angle between the u- and v-velocities. If we represent u on 
the positive real axis in the complex plane, then a negative correlation coefficient 
indicates that v is either in the second or third quadrants, since 4 must lie between 
90" and 370". (According to the simplified theory, 180" < 4 < 270" throughout 
the viscous region, measuring y5 counterclockwise from u.) Assuming then that 
v lies in the third quadrant, the correlation spectrum B'm can be computed 
using the variation of the experimental phase angle q5 wit,h frequency as given in 
figure 14. That is, if y is the phase angle between iu and v, then cosy = sin 4, 
and Fm is negative making the third term in equation (14) positive. The result- 
ing spectrum for 2 / p 2  is shown in figure 17 where we have set U, = 0-8?7,. If 
v lies in the second instead of the third quadrant, then the sign of qwv is reversed 
although the magnitude is the same. In  that case, the pressure-fluctuation spec- 
trum would be represented by the lower boundary of the cross-hatched region in 
figure 17. The second term of equation (14), ( 2 / k : )  ( d q / d y ) 2 ,  is also plotted in 
figure 17. It is evident that the principal contribution to the pressure field at  the 
lower frequencies comes from this term. It follows that the simplified theory as 
given by equation ( 5 )  is completely inadequate for the determination of the 
pressure field at low frequencies, since in this equation the term v dU/dy has been 
neglected. 

It is interesting to compare these calculations with the pressure spectrum for 
an isotropic field, where the pressure fluctuations are due to the non-linear terms. 
Batchelor (1956, p. 181) has given an expression for the pressure fluctuations in 
an isotropic field in terms of the three-dimensional energy spectrum. The first 
step then is to find an appropriate energy spectrum for this flow. Since the Rey- 
nolds number of the turbulence is large, the one-dimensional spectrum FG at 
y/6 = 0.05 can be fitted by the function 

where 5, is the longitudinal integral scale (Dryden 1943). Then using the trans- 
formation between the one- and three-dimensional energy spectra for isotropic 
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turbulence, the three-dimensional spectrum P(k)  can be computed using 
Batchelor's theory where 

Finally, the one-dimensional pressure spectrum F5, where we represent 2 / p 2  
by fj, can be obtained from 
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gJ = p2/p2. 

and is also shown in figure 17 (transformed to a frequency spectrum). The values 
given are appropriate to an isotropic field with each component equal to u'. It 
is evident that at the edge of the sublayer, the linear terms are the main source 
of the pressure field. 

The present theory provides a clear basis for having a pressure field at  the 
boundary. For each frequency component a(ap/ax)/ay z 0 across the viscous 
layer. Even though the fluctuation components vanish a t  the wall, the pressure 
field does not vanish with them. This is in contrast to an isotropic pressure field, 
whereg/p2cc ( 2 ~ ' ) ~ .  One might then expect that at  say f = 10 c/s, where the edge of 
the viscous region is at y/6 z 0.05, the pressure fluctuations at the boundary 

FIGURE 17. Pressure fluctuation spectra at  edge of sublayer and at  wall. 
- 
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would be of the same order as the pressure fluctuations a t  y/S = 0.05. Using 
boundary-layer parameters appropriate to Klebanoff's experiment, Willmarth's 
wall measurements are also shown in figure 17. It is apparent that the wall 
pressure field is much smaller than what would be expected from the condition 
that a(ap/ax)/ay z 0. Integrating the spectra in figure 17, and taking the square 
root, we havep'/pU. = 19 to 30for the linear terms, 3.7 for the isotropic field and 
2.4 from Willmarth. Perhaps the non-linear terms that have been neglected 
are essential for the computation of the pressure fluctuations in the sublayer. 
A major contribution to the pressure field comes from the lowest frequencies and 
at these frequencies the non-linear terms are relatively more important. Or 
possibly the condition a (ap/ax),By w 0 may not be valid for the linear equations 
for highly oblique disturbances at  low frequencies. 

10. Laminar-turbulent transition in strong turbulence 
The flow near the wall of a laminar boundary layer with strong free-stream 

turbulence is in many respects similar to the flow in the sublayer of a turbulent 
flow. The scale of the free-stream turbulence is in general large compared with the 
thickness of the laminar boundary layer. The free-stream turbulence moves 
downstream with the free-stream flow, and therefore at  a disturbance velocity 
much larger than the local mean velocities in the boundary layer near the wall. 
In  accordance with the present theory, we should expect to find a ' sublayer ' of the 
free-stream turbulence in a small region close to the wall. 

This suggests that the approach in this paper may be useful in dealing with the 
effect of free-stream turbulence on laminar boundary layers. Such a classical 
problem is the effect of strong free-stream turbulence on the Reynolds number 
of boundary-layer transition. 

The most satisfactory correlation of the experimental data was given by Taylor 
(1936). Taylor derived his transition parameter on the assumption that the lami- 
nar boundary layer responds to the fluctuating pressure gradients of the turbu- 
lence in the same way that it would respond to a mean pressure gradient along the 
boundary. Taylor then assumed that if these fluctuating pressure gradients caused 
momentary separation of the laminar boundary layer, they would lead to 
transition. 

There does not seem to be any theoretical basis for considering the turbulent 
pressure fluctuations as an exteral field acting on the laminar boundary 
layer. The turbulent fluctuations and their associated pressure gradients are 
inside the growing laminar boundary layer. The fluctuating field affects the 
mean flow through the shear stress not through the pressure fluctuations. 

The present theory has been applied to the experimental conditions given by 
Dryden (1936), i.e. very strong free-stream turbulence. These data are at a 
transition Reynolds number based on the displacement thickness S* of R,, N" 500, 
which appears to be the lowest transition Reynolds number to be found in the 
literature. This is very close to the minimum critical Reynolds number of 
R,, = 400 of the small disturbance stability curve for laminar boundary-layer 
oscillations. Accordingly, it  should not be necessary to take into account the 
amplification of the disturbance level in the boundary layer in this case. 
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Liepmann, Laufer & Liepmann (1951) have measured the energy spectrum 
for the free-stream turbulence in a wind tunnel under experimental conditions 
reasonably close to those of Dryden. We estimate LJU, M 1 x for Dryden, 
where L;./U, = 0.9 x 10-3 for Liepmann. Thus Liepmann’s spectrum can be used 
to calculate the ‘sublayer’ for Dryden’s experimental point. It is found that the 
disturbances due to the free-stream turbulence are damped down by viscosity in 
a ‘sublayer’ approximately 0.15 cm. thick. The close similarity between the 
physical picture for the sublayer of a turbulent flow and the * sublayer’ of the 
free-stream turbulence in a laminar boundary layer is shown in figure 18. The 
scale corresponding to 50 yo of the 2 energy is shown in each diagram. It seems 
clear that the physical model used by Taylor, in which the mean boundary layer 
responds to  the pressure gradients associated with the turbulence is not applic- 
able to  the description of the laminary boundary layer in strong free-stream 
turbulence. 

Screen 
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FIGURE 18. Comparison of sublayers for boundary-layer turbulence 

Nevertheless, Taylor’s parameter does appear to correlate the available experi- 
mental data. We would now like to show that by introducing an additional 
physical assumption we can obtain a transition parameter very similar to that 
of Taylor’s. No attempt will be made to justify this assumption here although it 
has led to reasonable results in some previous work (Lin, 1955, p. 90). 

We assume that the onset of transition in very strong free-stream turbulence 
depends on the relative amplitude of the Reynolds stress associated with the 
turbulent fluctuations and the shear in the mean flow. That is, we adopt as a 
rough crit’erion for the onset of transition for this case the requirement that 

-PEG = f (Rtr)pU/8. 

From the simplified theory the shear stress outside the ‘ sublayer ’ is of the form 
puV K ~ ( u ’ ) ~  f *v*/U,. Here U, = U,, the free stream velocity. The frequency f can 
be replaced by f = Ul/Le, where L, represents t,he ‘scale ’ of the turbulence. Then 
-puVcc ~ ( u ‘ ) ~ v & / ( U , L , ) ~ .  Now the thickness of the laminar boundary layer at  
transition is 8tT K (xt,v/Ul)&. Substituting, we have 

P(U’I2 W ~ l U &  = fl(&-)@t/ &%)!. 

(U’/Ul) (%/L$ = f l ( & T ) .  Finally, we obtain 
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Taylor’s parameter is 

where Lu is the lateral integral scale of the free-stream turbulence. The available 
transition data are too scattered to make it possible to distinguish between a 
4 or Q power variation with xtr/L. From the point of view of correlating the experi- 
mental data, either parameter would be equally effective, although Taylor’s 
parameter is based on the assumption that transition is caused by the small 
eddies, whereas for the new parameter it is assumed that transition is caused by 
the large eddies. 

(U’lUl) (%lL,)* = fi(%,)’ 

1 1. Concluding remarks 
The vorticity field responsible for the turbulent fluctuations in a boundary 

layer or similar shear flow is swept along with the velocity of the fluid elements. 
The velocity fluctuation field associated with this vorticity field is altered by the 
wall in two ways. The effect of the boundary condition v = 0 is to increase the 
magnitude of the wall velocity fluctuations u and w in the plane of the wall. The 
induced velocity at  the wall associated with each element of vorticity is doubled 
by the image vortex element required to cancel w a t  the wall. This form of ‘wall 
effect’ extends across the boundary lager and beyond into the potential flow. As 
a result of the boundary conditions u = ?u = 0 the turbulent velocity fluctuations 
are directly damped down by viscosity in a thin layer, the sublayer. 

The equations of motion for the turbulent velocity and pressure fluctuations 
are applied only in this narrow viscous region. The aim of the theory is to say, in 
detail, how a known turbulent field is damped by the wall. A simplified form of 
the theory is given in this paper. Only the leading terms in the differential equa- 
tions are retained. Furthermore, while the three-dimensional character of the 
fluctuation field is recognized and introduced at any early stage, the calculations 
are not carried far enough to make the three-dimensionality important. 

The same basic approach can be used to develop a more accurate description 
of the sublayer. The linear convective terms can be retained in the equations 
and solutions obtained using computing machines. When the convective terms 
are retained, disturbances at any obliquity can be considered. 

Ordinarily, a distinction is made between a laminar sublayer, where the mean 
velocity profile is linear, and a ‘transition ’ zone between this laminar sublayer 
and the fully turbulent part of the flow. No such distinction is made in this paper. 
The viscous sublayer is the entire region between t.he wall and the fully turbulent 
part of the flow. 

Finally, there are related problems in which the present approach may be 
useful. We have already shown that the theory applies to the ‘sublayer’ of the 
free-stream turbulence in a laminar boundary layer. A similar approach might 
be useful in the description of turbulent heat and mass transfer. 
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